Sitemap
A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.
Pages
Posts
[llms] 笔记文档
Published:
(该页面的 .md 和 .pdf 文件已放在视频简介,.md 文件可用该软件 (Obsidian) 或用 VS Code打开)
一、简介
本期视频主要分为以下五部分:
1. 需求和技术
- 企业对于大模型的不同类型个性化需求
- SFT(有监督微调)、RLHF(强化学习)、RAG(检索增强生成) -关注:基本概念;分别解决什么问题;如何根据需求选择;
- 微调部分详细介绍:
- 微调算法的分类
- **LoRA 微调算法
- 微调常见实现框架
2. 整体步骤说明
- 在 Linux 系统上微调一个大模型、部署模型、暴露 API 给 web 后端调用,本机前端展示全过程
3. 模型微调
- 框架: LLama-Factory (国产最热门的微调框架)
- 算法: **LoRA (最著名的部分参数微调算法)
- 基座模型:DeepSeek-R1-Distill-Qwen-1.5B -蒸馏技术通常用于通过将大模型(教师模型)的知识转移到小模型(学生模型)中,使得小模型能够在尽量保持性能的同时,显著减少模型的参数量和计算需求。
4. 模型部署和暴露接口
- 框架:FastAPI(一个基于 python 的 web 框架)
5. web后端调用
- 通过 HTTP 请求交互即可( Demo 前后端代码都在视频简介)
[llms] Docs
Published:
个人向学习文档
采样
Published:
sample
- 采样目的:生成文本时,从预测结果中选出高概率的候选词,避免随机选到低概率词导致的语句不合理,同时保留一定多样性。
- 先用temperature 调整分布平滑度,然后 top-k + top-p 控制候选范围
MoE 原理及实现
Published:
MoE:mix of experts
- 专家 stack 起来,计算 token 经过每个专家的输出,对结果加权。
反向传播计算
Published:
反向传播计算
论文阅读: Transformer
Published:
读 Transformer | 集中一下注意力
论文阅读: ResNet
Published:
读 ResNet | 图像识别的深度残差学习
论文阅读: AlexNet
Published:
读 AlexNet |
如何读论文
Published:
如何读论文
论文阅读: BERT
Published:
读 BERT | 针对语言理解任务预训练的深度双向 Transformer
论文阅读: CCV
Published:
读 CCV | 用于情景医学图像分割的循环上下文验证
LoRA 原理及实现
Published:
LoRA:low rank adaptation
- 用两个小矩阵相乘,去表示全量微调后权重矩阵的这个变化量
论文阅读: GPT-2.0
Published:
读 GPT-2.0 | 语言模型是无监督的多任务学习
LLMs: CS324
Published:
CS324
论文阅读: DeepSeek-R1
Published:
读 DeepSeek-R1 | 通过强化学习激励大语言模型的推理能力
论文阅读: GPT-1.0
Published:
读 GPT-1.0 | 通过生成式预训练来提高语言理解
LLMs: Seq2seq
Published:
Sequence to Sequence Learning with Neural Networks
LLMs: Tokenlizer
Published:
Tokenlizer
LLMs: Tokenlizer - BPE
Published:
Byte-pair encoding (BPE)
cs231n_cnn_3
Published:
CS231n_cnn: 3. Transfer Learning
cs231n_cnn_2
Published:
CS231n_cnn: 2. Visualizing what ConvNets learn
cs231n_cnn_1
Published:
CS231n_cnn: 1. Convolutional Neural Network
cs231n_8
Published:
CS231n: 8. Minimal Neural Network Case
cs231n_7
Published:
CS231n: 7. Learning the parameters
cs231n_6
Published:
CS231n: 6. Setting up the data and the model
cs231n_5
Published:
CS231n: 5. Architecture, ReLU, overfitting
cs231n_4
Published:
CS231n: 4. Backpropagation
cs231n_3
Published:
CS231n: 3. Optimization: Stochastic Gradient Descent
cs231n_2
Published:
CS231n: 2. 线性分类器, SVM loss, Softmax
cs231n_1
Published:
CS231n: 1. Introduction & KNN & Data Split
卷积计算
Published:
卷积计算
重读经典: ImageNet Classification with Deep Convolutional Neural Networks
Published:
读 CACM17 | AlexNet 使用深度卷积神经网络进行 ImageNet 分类
论文阅读: Dual-Path Convolutional Image-Text Embedding
Published:
读 CVPR17 | TOMM 用CNN分100,000类图像
论文阅读:Towards VQA Models That Can Read
Published:
迈向具有阅读能力的 VQA 模型
CVPR 2019
Vaniila Transformer
Published:
手撕 Transformer
portfolio
Portfolio item number 1
Published:
Short description of portfolio item number 1
Portfolio item number 2
Published:
Short description of portfolio item number 2 
publications
Paper Title Number 1
Published in Journal 1, 2009
This paper is about the number 1. The number 2 is left for future work.
Recommended citation: Your Name, You. (2009). "Paper Title Number 1." Journal 1. 1(1).
Download Paper | Download Slides
Paper Title Number 2
Published in Journal 1, 2010
This paper is about the number 2. The number 3 is left for future work.
Recommended citation: Your Name, You. (2010). "Paper Title Number 2." Journal 1. 1(2).
Download Paper | Download Slides
Paper Title Number 3
Published in Journal 1, 2015
This paper is about the number 3. The number 4 is left for future work.
Recommended citation: Your Name, You. (2015). "Paper Title Number 3." Journal 1. 1(3).
Download Paper | Download Slides
Paper Title Number 4
Published in GitHub Journal of Bugs, 2024
This paper is about fixing template issue #693.
Recommended citation: Your Name, You. (2024). "Paper Title Number 3." GitHub Journal of Bugs. 1(3).
Download Paper
talks
Talk 1 on Relevant Topic in Your Field
Published:
This is a description of your talk, which is a markdown files that can be all markdown-ified like any other post. Yay markdown!
Conference Proceeding talk 3 on Relevant Topic in Your Field
Published:
This is a description of your conference proceedings talk, note the different field in type. You can put anything in this field.
teaching
Teaching experience 1
Undergraduate course, University 1, Department, 2014
This is a description of a teaching experience. You can use markdown like any other post.
Teaching experience 2
Workshop, University 1, Department, 2015
This is a description of a teaching experience. You can use markdown like any other post.